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1 Introduction

1 Introduction

In this experiment the heat capacity of the rare earth dysprosium at low temperatures shall be mea-
sured. In particular, the behaviour of the heat capacity around the curie temperature TC = 90 K shall
be analysed.

1.1 The Debye- and Sommerfeld-Model of Heat Capacity

The heat capacity C is defined as the derivation of heat Q in respect to temperature T of a material:

C =
∂Q
∂T

(1.1)

For a constant volume of the examined material, the intrinsic energy U is the same as the heat Q,
because:

dU = δQ + δW = δQ + p dV︸︷︷︸
=0

= δQ (1.2)

So the heat capacity for a constant volume can be written as a derivation of the intrinsic energy with
respect to the temperature:

CV =
(

∂U
∂T

)
V

(1.3)

In the case of the solid Dysprosium, the experiment is not perfectly done under constant volume, but
due to the low expansion coefficient of solids, the resulting error is negligible.

The intrinsic energy of a solid has two components, the contribution of electrons and of phonons
(lattice vibration).

To calculate the intrinsic energy component of the phonons, all phonon energies have to be summed
up. As phonons are bosons, they obey the Bose-Einstein distribution. So the intrinsic energy is:

UPh =
3NA

∑
i=1

h̄ωi

e
h̄ωi
kBT − 1

(1.4)

The factor 3 arises from the 3 dimensions. Transforming this sum into an integral, it has to be
multiplied by the density of states z(ω):

Uph =
∫

ω

h̄ωi

e
h̄ωi
kBT − 1

z(ω) dω (1.5)

Here Debye used an approximation. In order to calculate the density of states in dependence of the
frequency ω, he used the linear dispersion relation ω = c · q, with q as the wave vector of the phonons.
This is actually only valid for low energy acoustic phonons. Then he cut up the allowed frequency
at a certain value, the Debye-frequency which can be put into relation to the sound velocity. Finally,
the intrinsic energy becomes:

Uph = 9NA

∫ ωD

0

(
h̄ωi
kBT

)2 e
h̄ωi
kBT(

e
h̄ωi
kBT − 1

)2 ·
ω2

ω2
D

dω (1.6)

The heat capacity then becomes:

Cph,V = 9NAkB

(
T

θD

)3 ∫ θD
T

0

x4ex

(ex − 1)2 dx θD =
h̄ωD
kB

x =
h̄ω

kBT
(1.7)
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θD is called the Debye-temperature. This leads to following results:

cph,V ∝ T3 for T � θD (1.8)

cph,V = const. = 3NAkB for T � θD (1.9)

In the case of this experiment, the formula for low temperatures is more important.

The electronic heat capacity can be calculated via an “enlargement” of the Fermi-Dirac distribution
at the Fermi energy. In this calculation, the density of states of electrons can be approximated by
a taylor expansion series. The first non-vanishing contribution is of second order. In Sommerfeld’s
approximation, he exactly only used this second order term to calculate the heat capacity contribution
of electrons. As the intrinsic energy is of second order in temperature, the heat capacity is of first
order. The neglect of the following terms is reasonable because the number of thermally excited
electrons is proportional to T

TF
, and TF is very high. In conclusion, the heat capacity contributions of

electrons is:

cel ∝
T
TF

(1.10)

It is only important for materials with very low temperature and can be neglected in the case of the
experiments done here.

1.2 Magnetic Phase Transitions of Dysprosium

The behaviour of the heat capacity described above are for non-magnetic materials. In magnetic
materials (ferromagnetic or anti-ferromagnetic), there are magnetic phase transitions which break
the symmetry of the former isotropic material. The magnetisation of the rare-earth dysprosium
arises from the indirect RKKY exchange interaction via the two 6s electrons which leads to an anti-
ferromagnetic order below the Néel temperature of TN = 180 K and a ferromagnetic order below the
Curie temperature TC = 90 K.

The existence of those two phase transition temperatures can be explained by the oscillating be-
haviour of the exchange integral JRKKY of RKKY interactions in dependence of the distance of 4f-
electrons of the magnetic atoms. This distance decreases with lower temperature so that the sign of
the exchange interaction switches from negative (anti-ferromagnetic) to positive (ferromagnetic) at
the Curie temperature.

Experimentally, the behaviour of the specific heat of Dysprosium around the second phase transition
at the Néel-temperature can be determined as:

c =
A±

α
|t|−α + Et + B t =

T − TN
TN

(1.11)

t is also called the “critical temperature” and α the “critical exponent”.

2 Experimental Setup

The sample is situated in an evacuated box. The box itself was hung into a cryostat which can be
cooled down by liquid nitrogen. The bottom of the cryostat is made of copper. If the box is put on
the bottom, it cools down very fast by the nitrogen. To cool down the sample inside the box, the
exchange gas helium can be filled into the box to transfer the coldness from the box into the sample.
The box also works as a heat shield for the sample to minimize the radiant heat exchange. In the ideal
case, the radiance of the sample and the radiance of the box compensate each other. A schematic
picture of the whole device can be found in the instructions for this experiment.
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3 Measurement of lateral heat

After the cool-down of both sample and box, the box can be removed from the bottom again in
order to loosen the contact to the cryostat. The helium exchange gas then can also be removed by an
diffusion vacuum pump. There are two electric heaters and temperature sensors at the sample and
the box which can be controlled separately. As there are no contacts and also not exchange particles
between the box and the sample, almost no heat exchange occur. There are some clips between the
cryostat and the box in order to stabilise the box mechanically and in order to have still a possibility
of a small heat transfer between the box and the cryostat if the heater heats to fast and the box need
to be cooled.

The aim of this experiment is to measure a dependence of the supplied heat energy by the heaters
and the temperature of the sample. To have an equilibrium of the radiant energy, it was attempted
to adapt the temperature of the box to the temperature of the sample. In the first measurement,
the examination of the latent heat of dysprosium at the Curie-temperature, this was done manually
with rotary knobs of LabView. But for the measurement of the specific heat capacity of a spectrum
to get the critical parameters at the Néel-temperature which took several hours, this job was done
automatically by LabView itself.

3 Measurement of lateral heat

3.1 Through Temperature Curve at TC

For the measurement of the lateral heat of Dysprosium at the Curie temperature TC the sample was
cooled down to 77 K. Then the exchange gas helium was removed and both box and sample were
heated with constant power. The temperatures of these two were measured over time and are shown
in Figure 1. At the beginning, the heating power of box and sample were adjusted to an equal
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Figure 1: Temperature of box and dysprosium sample over time.

increase of temperature. At the critical temperature TC a phase transition can be observed. Figure 2
on the next page shows this region in detail.
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To calculate the lateral heat, two lines had been fitted to the temperature profile of the sample, one
before the phase transition and one after. Because of the non-linear temperature profile in the first
plot, these two lines are not exactly parallel. So we decided to take the distance of these lines at a
temperature of 89.5 K, which seemed to be in the middle of the visible phase transition in the plot.
With an error of this assumption of 1 K and the resulting errors of the fitting procedure used in an
Gaussian error propagation we get a time difference of

∆t = (185.5± 16.7) s

With a constant heating power of 6.781 mW this leads to an energy difference of the phase transition
of (1.26± 0.12) J. So the sample with a mass of 5.6 · 10−2 mol has a lateral heat at the first phase
transition of

(22.46± 2.02) J/mol

which is equivalent to (0.138± 0.013) J/g.
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Figure 2: Temperature of box and dysprosium sample over time.
Fit parameters: Two lines with y = mi · x + ci

m1 = (0.0037456± 0.0000013) K/s and c1 = (78.713± 0.003) K
m2 = (0.0035289± 0.0000022) K/s and c2 = (78.682± 0.008) K

3.2 Through Specific Heat

For this measurement, the specific heat was measured over the temperature of the sample by mea-
suring its temperature and the heating power. This curve can be seen in Figure 3 on the following
page.

The latent heat of the first phase transition can be gained by integrating the peak of this phase
transition. For this purpose, a Breit-Wigner distribution with a linear background has been fitted to
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3 Measurement of lateral heat
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Figure 3: Specific heat of dysprosium over temperature. The two phase transitions at the Curie temperature
(left) and at the Neél temperature (right) can be seen.

these data points, as seen in Figure 4 on the next page. Then this Breit-Wigner distribution without
the background was integrated from 80 K to 100 K, which is equivalent to the lateral heat of

∫ 100 K

80 K

s
2π
· Γ
(x− µ)2 + 1

4 Γ2
dx = (33.65± 0.51) J/mol

These two values differ very much. The first one might be very inaccurate because of the linear fits
combined with the non-linear behaviour of the curve and because of the quite short measuring time.
The second value seems to be more accurate, because measurement time was much longer and the
value was determined from a fitted function.

But the literature value of 93.1± 1.5 J/mol still is much higher, maybe because of a much longer
measurement time.

3.3 Entropy

The entropy can be calculated through the definition of thermal energy δQ = T dS. So we get for the
entropy based on the temperature curve for a Curie temperature of TC = 90 K:

∆S = 0.2496
J

mol K

And for the entropy based on the specific heat curve:

∆S = 0.3739
J

mol K
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Figure 4: Specific heat of dysprosium over temperature, first peak in detail.
Fit parameters: y(x) = m · x + c + s

2π ·
Γ

(x−µ)2+ 1
4 Γ2 with

m = (0.1991± 0.0035) J
mol K2

c = (14.10± 0.33) J
mol K

s = (35.46± 0.56) J
mol

Γ = (1.610± 0.033) K
µ = (89.59± 0.02) K
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4 Critical Exponent and Neél temperature

For comparison with the spin entropy, the total angular momentum L and the total spin S had to
be calculated. Dysprosium has an electron configuration of [Xe]4 f 106 s 2. Therefore the angular
momentum of the 7 electrons in the first half of the 4 f-shell sum up to zero. So the momentum of
the remaining 3 electrons sums up to L = 3 + 2 + 1 = 6. Additionally, these 3 remaining electrons
compensate the spin of 3 electrons in the first half of this shell, which results in a total spin defined
by the remaining 4 electrons of S = 4 · 1

2 = 2. So the total momentum of the dysprosium sample is
J = L + S = 6 + 2 = 8. Therewith the spin entropy can be calculated to

S = R ln (2J + 1) = 8.314
J

mol K
· ln (17) = 23.55

J
mol K

This entropy is the entropy the system receives when it transfers from the helical antiferromagnetic
state to the unmagnetic isotropic state. During this phase transition, it is obvious that much more
entropy gets into the system than during the phase transition from the ferromagnetic state to the
antiferromagnetic state at Curie temperature which was calculated before. So actually, there is not a
big difference between the entropy of the magnetic states, but between the isotropic and the magnetic
states.

4 Critical Exponent and Neél temperature

For the determination of the critical exponent α and the Neél temperature TN, a function

C(T) =
A±

α

∣∣∣∣T − TN

TN

∣∣∣∣−α

+ E · T − TN

TN
+ B (4.1)

described by scale laws has been fitted do the data values of the right phase transition, as seen in
Figure 5 on the facing page. In this function, A+ is for T > TN and A− for T < TN and the given
parameters E = 25 J

mol K and B = 16 J
mol K are fixed. Resulting from the fit we get a value for the

critical exponent of

α = 0.138± 0.002

and for the Neél temperature we get

TN = (180.097± 0.002) K .

Compared to the literature values of α = 0.14 ± 0.05 and of TN = (179.90± 0.18) K, our results
are quite good. Maybe they could be improved by a longer measurement time. As can be seen in
our results, the scale law matches quite well to the measured values. Before reaching the critical
temperature TN , the curve follows the exponential regime which can be got by using Landau-theory
of phase-transitions. Then, at the critical temperature, there is a jump of the free energy which
results also in a discontinuity of the specific heat as its proportional to the second derivation of
the free energy after the temperature. After this transition, the material shows a linear, but almost
constant behaviour of the specific heat. In this quite high-temperature regime where the material is
isotropic. The specific heat should be just before reaching its constant value along with Einstein’s
model.
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Figure 5: Specific heat of dysprosium over temperature, first peak in detail.
Fit parameters to Equation (4.1) on the preceding page:

A+ = (1.93± 0.02) J
mol K

A− = (3.86± 0.03) J
mol K

α = 0.138± 0.002
TN = (180.097± 0.002) K
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